Locations:
Search IconSearch
February 1, 2021/Neurosciences/Podcast

Obstructive Sleep Apnea’s Impact on Comorbid Conditions (Podcast)

Vascular remodeling leaves a multitude of long-term effects

New and emerging research is helping clinicians better understand the role of untreated obstructive sleep apnea in the development or worsening of comorbidities.

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

“The reason we treat sleep apnea is, number one, to improve quality of life and, number two, to improve cardiovascular health, although arguably there are other health benefits,” says Reena Mehra, MD, MS, Director of Sleep Disorders Research in Cleveland Clinic’s Sleep Disorders Center.

Dr. Mehra explains the link between sleep apnea and cardiovascular, neurological and metabolic comorbidities in the newest episode of Cleveland Clinic’s Neuro Pathways podcast. She also discusses:

  • Manifestations of obstructive sleep apnea
  • Treatment options, including continuous positive airway pressure (CPAP), oral appliances, upper airway surgery and hypoglossal nerve stimulation
  • Next steps for patients suspected of having obstructive sleep apnea
  • How to help patients adhere to CPAP treatment

Click the podcast player above to listen to the episode now, or read on for a short edited excerpt. Check out more Neuro Pathways episodes at clevelandclinic.org/neuropodcast or wherever you get your podcasts.

Excerpt from the podcast

Dr. Mehra: Obstructive sleep apnea is characterized by upper airway collapse, which leads to cessation of breathing. When there’s cessation of breathing, oxygen levels decline. With the apneas and also partial upper airway closure (the hypopneas), there is sympathetic nervous system activation — alterations in the autonomic nervous system. During the event there’s enhanced parasympathetic tone, and then subsequent to the event there is sympathetic surge. So, there’s this juxtaposition of parasympathetic and sympathetic activation that occurs, and there are rises in carbon dioxide. Times of hypoxia and then resaturation are times of vulnerability to oxidative stress and increased systemic inflammation.

Advertisement

Taken together, these pathophysiologic consequences of obstructive sleep apnea confer risk not only immediately during sleep but also during the daytime. There are data to show that in those with severe sleep apnea over time, vascular remodeling occurs. This sets the stage for increased cardiovascular consequences because of alterations in the autonomic nervous system that can be increased in the setting of sleep apnea — hypoxia, hypercapnia, increased systemic inflammation, oxidative stress, a prothrombotic state. The vascular remodeling sets the stage for metabolic consequences as well, with insulin resistance. All of these taken together can increase the risk for cardiovascular events, meaning myocardial infarction, stroke, heart failure and, something our group has been very interested in, cardiac arrhythmia. Arrhythmogenesis likely increases partly due to remodeling the heart structurally and also electrically.

In terms of the neurologic aspects in addition to stroke, there are relationships between not only sleep apnea but also sleep disruption and sleep deprivation with neurodegeneration, in particular Alzheimer’s dementia. Some really compelling data has emerged over the last several years, showing that in experimental models curtailment of sleep impairs beta-synuclein clearance and causes buildup of this pathology and, therefore, can contribute to neurodegeneration. In addition, there are data to suggest that the progression of neurodegeneration over time may be related to the nocturnal hypoxia associated with sleep apnea.

Advertisement

Related Articles

16-NEU-2800-Kubu-101058161-650×450
What Do Patients Want from DBS for Parkinson’s Disease?

New study advances understanding of patient-defined goals

photo of a man sleeping at a desk, with a podcast icon overlay
March 15, 2024/Neurosciences/Podcast
Diagnosis and Management of Idiopathic Hypersomnia (Podcast)

Testing options and therapies are expanding for this poorly understood sleep disorder

illustration of an alzheimer brain and a packet of sildenafil pills
March 11, 2024/Neurosciences/Research
Sildenafil as an Alzheimer’s Candidate Drug: Further Support From Insurance Database and Mechanistic Studies

Real-world claims data and tissue culture studies set the stage for randomized clinical testing

brain scan showing perimesencephalic subarachnoid hemorrhage
Study Supports Less-Strict Monitoring for Nonaneurysmal Perimesencephalic SAH Without Hydrocephalus

Digital subtraction angiography remains central to assessment of ‘benign’ PMSAH

illustrated brain with the letters "AI" on a computer circuit board
As AI Tools Emerge, Be Proactive and Engaged to Shape Their Development

Cleveland Clinic neuromuscular specialist shares insights on AI in his field and beyond

histology image of a gray matter lesion in a multiple sclerosis brain
Study Suggests Protective Role for Microglia at Borders of Gray Matter Lesions in Progressive MS

Findings challenge dogma that microglia are exclusively destructive regardless of location in brain

series of digital-looking brain icons with a podcast button overlay on top
March 1, 2024/Neurosciences/Podcast
Harnessing the Power of AI in Medicine (Podcast)

Neurology is especially well positioned for opportunities to enhance clinical care and medical training

illustration of a neuron affected by multiple sclerosis
Clinical Trials in Progressive MS: An Assessment of Advances and Remaining Challenges

New review distills insights from studies over the past decade

Ad