Locations:
Search IconSearch

Mechanical Signaling Cascade Central to Fibrotic Scar Tissue Development Defined

Novel protein-to-protein interactions that relate to key pro-fibrotic signals

Lung fibroblasts isolated from a preclinical model were stimulated with TGF-β to induce myofibroblast differentiation

In a new study published in Science Signaling, Cleveland Clinic researchers have identified a novel target for new therapies that may help to treat or prevent a host of fibrotic conditions, which contribute to nearly half of overall mortality in the United States.

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Fibrotic diseases are characterized by the overproduction of extracellular matrix (ECM), with resultant formation of scar tissue. Cells called myofibroblasts are thought to be the major producers of the scar tissue. Two key signals are needed to generate these myofibroblasts—active TGF-β (transforming growth factor-β) and a mechanical signal.

Previous research (published in the Journal of Clinical Investigation, 2014) led by Mitchell Olman, MD, a Cleveland Clinic physician-scientist and senior author of the current study, identified an ion channel called TRPV4 (transient receptor potential vanilloid) as the key transducer of the mechanical signal that leads to myofibroblast generation.

In the current study, research teams led by Dr. Olman and S.V. Naga Prasad, PhD, discovered that TRPV4 selectively binds to a kinase called PI3Kγ (phosphoinositide 3-kinase γ) to form an intracellular protein complex. This TRPV4-PI3Kγ complex—which is recruited by TGF-β—migrates from inside the cell to the plasma membrane and subsequently amplifies the actions of each individual protein, ultimately resulting in the differentiation of fibroblasts to myofibroblasts. Myofibroblasts produce and expel ECM outside of the cell, and contract the ECM to generate scar tissue—the hallmark of fibrotic diseases.

Taken together, these findings suggest that blocking TRPV4 and PI3Kγ binding may be an unexplored avenue for treating or preventing fibrotic conditions of many major organs. While additional research is necessary, this study provides promising support and rationale for a new treatment approach.

Advertisement

Lisa Grove, PhD, a postdoctoral fellow in Dr. Olman’s laboratory, is first author on the study, which was supported by the National Heart, Lung, and Blood Institute (part of the National Institutes of Health). Dr. Olman is a researcher in the Department of Inflammation & Immunity and a practicing pulmonologist. Dr. Prasad is a researcher in the Department of Cardiovascular & Metabolic Sciences.

Photo: Lung fibroblasts isolated from a preclinical model were stimulated with TGF-β to induce myofibroblast differentiation. The presence of yellow/orange in stress fibers indicates colocalization of phalloidin (F-actin, red) and alpha smooth muscle actin (αSMA, green), indicating incorporation of αSMA into stress fibers, which is a hallmark of myofibroblasts.

Advertisement

Related Articles

24-NEU-4528160-genetics-parkinson-disease-650×450
Multi-Ancestry Genetic Study of Parkinson’s Disease Identifies New Risk Genes in Pursuit of Novel Treatment Targets

International collaboration is most genetically diverse study of the disease to date

23-NEU-4357266-stock-brain-image_650x450
Noninvasive Technology Enhances Ability to Map Brain Activity to Track Behavior Change

Preclinical work promises large-scale data with minimal bias to inform development of clinical tests

Asthma triggers floating around a set of lungs and a person.
Evie's Curated Regular CQD Post 2

Matching SNOMED Term with Curated Post. Please do not touch this post or any of its categories/snomed terms, thank you!

Asthma triggers floating around a set of lungs and a person.
Evie's Curated Regular CQD Post 8

Matching Primary -> Secondary SNOMED Term with Curated Post. Please do not touch this post or any of its categories/snomed terms, thank you!

23-NEU-4189360-hydrogen-sulfide-650×450
Can Boosting Hydrogen Sulfide Bolster Standard-of-Care Glioblastoma Therapy to Extend Survival?

Cleveland Clinic researchers pursue answers on basic science and clinical fronts

23-NEU-4390509-CQD-Hero-650×450
Microglial Immunometabolism Endophenotypes Implicated in Sex Differences in Alzheimer’s Disease

Study suggests sex-specific pathways show potential for sex-specific therapeutic approaches

23-CCC-4375928 Quantum Innovation Catalyzer 650×450
A Unique Opportunity to Explore Quantum Computing’s Potential

Cleveland Clinic launches Quantum Innovation Catalyzer Program to help start-up companies access advanced research technology

Ad